skip to main content


Search for: All records

Creators/Authors contains: "Root, Nicholas B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The goal of the field of haptics is to create technologies that manipulate the sense of touch. In virtual and augmented reality, haptic devices are for touch what loudspeakers and RGB displays are for hearing and vision. Haptic systems that utilize micromotors or other miniaturized mechanical devices (e.g., for vibration and pneumatic actuation) produce interesting effects, but are quite far from reproducing the feeling of real materials. They are especially deficient in recapitulating surface properties: fine texture, friction, viscoelasticity, tack, and softness. The central argument of this progress report is that in order to reproduce the feel of everyday objects, molecular control must be established over the properties of materials; ultimately, such control will enable the design of materials which can change these properties in real time. Stimuli‐responsive organic materials, such as polymers and composites, are a class of materials which can change their oxidation state, conductivity, shape, and rheological properties, and thus might be useful in future haptic technologies. Moreover, the use of such materials in research on tactile perception could help elucidate the limits of human tactile sensitivity. The work described represents the beginnings of this new area of inquiry, in which the defining approach is the marriage of materials science and psychology.

     
    more » « less
  2. Abstract

    A type of haptic device is described that delivers two modes of stimulation simultaneously and at the same location on the skin. The two modes of stimulation are mechanical (delivered pneumatically by inflatable air pockets embedded within a silicone elastomer) and electrical (delivered by a conductive polymer). The key enabling aspect of this work is the use of a highly plasticized conductive polymer based on poly(3,4‐ethylenedioxythiphene) (PEDOT) blended with elastomeric polyurethane (PU). To fabricate the “electropneumotactile” device, the polymeric electrodes are overlaid directly on top of the elastomeric pneumatic actuator pockets. Co‐placement of the pneumatic actuators and the electrotactile electrodes is enabled by the stretchability of the PEDOT:tosylate/PU blend, allowing the electrotactiles to conform to underlying pneumatic pockets under deformation. The blend of PEDOT and PU has a Young's modulus of ≈150 MPa with little degradation in conductivity following repeated inflation of the air pockets. The ability to perceive simultaneous delivery of two sensations to the same location on the skin is supported by experiments using human subjects. These results show that participants can successfully detect the location of pneumatic stimulation and whether electrotactile stimulation is delivered (yes/no) at a rate significantly above chance (mean accuracy = 94%).

     
    more » « less
  3.  
    more » « less